On the direct sum of dual-square-free modules

نویسندگان

چکیده

A module M is called square-free if it contains nonon-zero omorphic submodules and B with A∩B= 0. Dually, Mis dual-square-free has no proper M=A+B M/A∼=M/B. In this paper we show that M=⊕i∈I Mi, then iff each Mi Mj ⊕j=i∈I are orthogonal. M=⊕ni=1Mi, dual-square-free, 1⩽i⩽n, ⊕ni=jMi factor-orthogonal. Moreover, in the finite case, weshow M=⊕i∈ISi a direct sum of non-is simple modules, dual-square-free. particular, M=A⊕B where B=⊕i∈ISi ofnon-isomorphic factor-orthogonal; extends an earlier result by theauthors [2, Proposition 2.8].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on direct sums of baer modules

the notion of baer modules was defined recently

On the decomposition of noncosingular $sum$-lifting modules

Let $R$ be a right artinian ring or a perfect commutative‎‎ring‎. ‎Let $M$ be a noncosingular self-generator $sum$-lifting‎‎module‎. ‎Then $M$ has a direct decomposition $M=oplus_{iin I} M_i$‎,‎where each $M_i$ is noetherian quasi-projective and each‎‎endomorphism ring $End(M_i)$ is local‎.

متن کامل

The unit sum number of discrete modules

In this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $Z_{2}$. We also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.

متن کامل

Big Indecomposable Modules and Direct-sum Relations

The main theorem of this paper complements the tame-wild dichotomy for commutative Noetherian rings, obtained by Klingler and Levy [14]–[16]. They gave a complete classification of all finitely generated modules over Dedekind-like rings (cf. Definition 1.1) and showed that, over any ring that is not a homomorphic image of a Dedekind-like ring, the category of finite-length modules has wild repr...

متن کامل

the unit sum number of discrete modules

in this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $z_{2}$. we also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra and discrete mathematics

سال: 2022

ISSN: ['1726-3255', '2415-721X']

DOI: https://doi.org/10.12958/adm1807